Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206933

RESUMO

Small ruminant lentivirus (SRLV) causes Maedi-Visna or Ovine Progressive Pneumonia in sheep and creates insidious livestock production losses. This retrovirus is closely related to human immunodeficiency virus and currently has no vaccines or cure. Genetic marker assisted selection for sheep disease resiliency presents an attractive management solution. Previously, we identified a region containing a cluster of zinc finger genes that had association with ovine SRLV proviral concentration. Trait-association analysis validated a small insertion/deletion variant near ZNF389 (rs397514112) in multiple sheep breeds. In the current study, 543 sheep from two distinct populations were genotyped at 34 additional variants for fine mapping of the regulatory elements within this locus. Variants were selected based on ChIP-seq annotation data from sheep alveolar macrophages that defined active cis-regulatory elements predicted to influence zinc finger gene expression. We present a haplotype block of variants within regulatory elements that have improved associations and larger effect sizes (up to 4.7-fold genotypic difference in proviral concentration) than the previously validated ZNF389 deletion marker. Hypotheses for the underlying causal mutation or mutations are presented based on changes to in silico transcription factor binding sites. These variants offer alternative markers for selective breeding and are targets for future functional mutation assays.

2.
Front Genet ; 12: 628849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093640

RESUMO

The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader livestock species FAANG initiative, aims to identify and characterize gene regulatory elements in domestic sheep. Regulatory element annotation is essential for identifying genetic variants that affect health and production traits in this important agricultural species, as greater than 90% of variants underlying genetic effects are estimated to lie outside of transcribed regions. Histone modifications that distinguish active or repressed chromatin states, CTCF binding, and DNA methylation were used to characterize regulatory elements in liver, spleen, and cerebellum tissues from four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-genome bisulfite sequencing (WGBS) was performed to determine the complement of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and hypomethylated regions were identified across tissues, and these locations were compared with chromatin states to better distinguish and validate regulatory elements in these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1 in the spleen and cerebellum and CTCF in the liver displayed the greatest number of hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and promoters in the cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin states defined by histone marks and CTCF occupied approximately 22% of the genome in all three tissues. Furthermore, the liver and spleen displayed in common the greatest percent of active promoter (65%) and active enhancer (81%) states, and the liver and cerebellum displayed in common the greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs were identified in all three tissues, with the highest number of unique motifs identified in the cerebellum. In summary, this study has identified the regulatory regions of genes in three tissues that play key roles in defining health and economically important traits and has set the precedent for the characterization of regulatory elements in ovine tissues using the Rambouillet reference genome.

3.
Genetics ; 217(3)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789347

RESUMO

The gram-negative bacterium Coxiella burnetii is the causative agent of Query (Q) fever in humans and coxiellosis in livestock. Host genetics are associated with C. burnetii pathogenesis both in humans and animals; however, it remains unknown if specific genes are associated with severity of infection. We employed the Drosophila Genetics Reference Panel to perform a genome-wide association study to identify host genetic variants that affect host survival to C. burnetii infection. The genome-wide association study identified 64 unique variants (P < 10-5) associated with 25 candidate genes. We examined the role each candidate gene contributes to host survival during C. burnetii infection using flies carrying a null mutation or RNAi knockdown of each candidate. We validated 15 of the 25 candidate genes using at least one method. This is the first report establishing involvement of many of these genes or their homologs with C. burnetii susceptibility in any system. Among the validated genes, FER and tara play roles in the JAK/STAT, JNK, and decapentaplegic/TGF-ß signaling pathways which are components of known innate immune responses to C. burnetii infection. CG42673 and DIP-ε play roles in bacterial infection and synaptic signaling but have no previous association with C. burnetii pathogenesis. Furthermore, since the mammalian ortholog of CG13404 (PLGRKT) is an important regulator of macrophage function, CG13404 could play a role in host susceptibility to C. burnetii through hemocyte regulation. These insights provide a foundation for further investigation regarding the genetics of C. burnetii susceptibility across a wide variety of hosts.


Assuntos
Resistência à Doença , Variação Genética , Febre Q/genética , Locos de Características Quantitativas , Animais , Proteínas de Ciclo Celular/genética , Coxiella burnetii/patogenicidade , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Olho/genética , Patrimônio Genético , Febre Q/microbiologia
4.
Front Genet ; 11: 612031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488675

RESUMO

Alveolar macrophages function in innate and adaptive immunity, wound healing, and homeostasis in the lungs dependent on tissue-specific gene expression under epigenetic regulation. The functional diversity of tissue resident macrophages, despite their common myeloid lineage, highlights the need to study tissue-specific regulatory elements that control gene expression. Increasing evidence supports the hypothesis that subtle genetic changes alter sheep macrophage response to important production pathogens and zoonoses, for example, viruses like small ruminant lentiviruses and bacteria like Coxiella burnetii. Annotation of transcriptional regulatory elements will aid researchers in identifying genetic mutations of immunological consequence. Here we report the first genome-wide survey of regulatory elements in any sheep immune cell, utilizing alveolar macrophages. We assayed histone modifications and CTCF enrichment by chromatin immunoprecipitation with deep sequencing (ChIP-seq) in two sheep to determine cis-regulatory DNA elements and chromatin domain boundaries that control immunity-related gene expression. Histone modifications included H3K4me3 (denoting active promoters), H3K27ac (active enhancers), H3K4me1 (primed and distal enhancers), and H3K27me3 (broad silencers). In total, we identified 248,674 reproducible regulatory elements, which allowed assignment of putative biological function in macrophages to 12% of the sheep genome. Data exceeded the FAANG and ENCODE standards of 20 million and 45 million useable fragments for narrow and broad marks, respectively. Active elements showed consensus with RNA-seq data and were predictive of gene expression in alveolar macrophages from the publicly available Sheep Gene Expression Atlas. Silencer elements were not enriched for expressed genes, but rather for repressed developmental genes. CTCF enrichment enabled identification of 11,000 chromatin domains with mean size of 258 kb. To our knowledge, this is the first report to use immunoprecipitated CTCF to determine putative topological domains in sheep immune cells. Furthermore, these data will empower phenotype-associated mutation discovery since most causal variants are within regulatory elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...